ASIM - Arbeitsgemeinschaft Simulation

ASIM - FG GMMS Grundlagen und Methoden in Modellbildung und Simulation

Die Fachgruppe Grundlagen und Methoden in Modellbildung und Simulation (GMMS) befasst sich in enger Zusammenarbeit von Industrie und Forschungseinrichtungen mit neuen methodischen Entwicklungen zu Modellierungsansätzen, numerischen und softwaretechnischen Verfahren, Algorithmen, Simulationswerkzeugen sowie mit Problemen der simulationsgestützten Optimierung. Von besonderem Interesse sind Methoden und Werkzeuge, die über mehrere Anwendungsdomänen hinweg eingesetzt werden.
Einen weiteren Schwerpunkt bildet die Anwendung von Methoden der Modellbildung und Simulation in der Lehre und in der Weiterbildung. Darüber hinaus sind die Arbeitsgruppen Simulation und KI und Verkehrssimulation in die Fachgruppe integriert, welche sich spezifischen Problemstellungen widmen.

Eine lange Tradition hat der Vergleich von Modellierungs- und Simulationsansätzen sowie deren Unterstützung durch  Simulationswerkzeuge, welcher mit den ARGESIM Comparisons on Modeling and Simulation Techniques and Simulation Software verbunden ist. Die Comparisons werden regelmäßig in den Simulation Notes (ehemals Simulation News) Europe (SNE) publiziert.

 

Die Fachgruppe ist Mitorganisator des jährlichen Doktorandenworkshops Trends in Computing and Scientific Engineering (TCSE) sowie des gemeinsamen Jahresworkshops der FGs STS und GMMS und organisiert weitere themenspezifische Workshops.


Die nachfolgende Auflistung gibt einen Überblick über typische Problemstellungen zur Modellbildung und Simulation in der Fachgruppe.

 

Modellierung

  • Modellierungsansätze und Beschreibungsmittel wie z.B. physical Modeling, objektorientierte Modellierung, Agenten, DEVS, PETRI-Netze, StateCharts, neuronale Netze, partielle und gewöhnliche Differentialgleichungen, verallgemeinerte Netzwerke und Bondgraphen, ...
  • Spezifikations- und Modellierungssprachen wie z.B. Modelica, VHDL-AMS, ACSL, SysML, ...
  • Modellierungs- /Modellgenerierungprobleme  wie z.B. Ordnungsreduktion, Prozessidentifikation, numerische Approximation und Optimierung, symbolische Analyse und Computer-Algebra, wissensbasierte Modellierung/Modellgenerierung, ...
  • formale Methoden wie z.B. Rule Checking, Equivalence Checking, Model Checking, ...

Simulation

  • Simulationsparadigmen wie z.B. ereignisorientierte Scheduling-Verfahren, numerische Löser für partielle und gewöhnliche DGL sowie DAE, hybride und objektorientierte Simulationsansätze, ...
  • spezifische numerische Probleme wie z.B. steife DGL, sehr große DGL Systeme, DAE mit hohem Index, ...
  • Probleme der parallelen, verteilten und Internet-basierten Simulation  wie z.B. Algorithmen, Simulatorkopplung, Infrastrukturen wie HLA, PVM, MPI, ...
  • Schnittstellen und Kopplung mit anderen Methoden wie z.B. graphische Modelleingabe, Visualisierung und Animation von Simulationsergebnissen, simulationsbasierte Optimierung, Prozessanbindung und Echtzeitfähigkeit, ...